REBOL Essentials, draft#23-12-Dec-2002 1
copyright vpavliu

Creating lightweight cross-platform Applications

Viktor Paviu
12-Dec-2002

REBOL Essentials, draft#23-12-Dec-2002
copyright vpavlu

|. REBOL LANGUAGE TUTORIAL ..ottt e e s sttt e e s esaae s s sesaseessssbeesssenssessssabseessssssenessnsnes 5
VLA N I BT =1 =10 6
CARL SASSENRATH ABOUT REBOL ...ttt ettt ee sttt e s et s s s eaaae e e s s ebb e e e s ssbee e s sessaeesssaraneesans 7
VA S O\ 1 3 8
RUNNING YOUR FIRST PROGRAM ..ottt ettt ettt e ettt e e s s etat e s s ssatesessssaseassasbesesssssaesssessssssssarsnessans 9
S = 9
GET THE USER GUIDE ...cciiiiiieitteteiiei e e e e eesebate ettt e e s sessesbassseesesssessasbasseeeseassessaasb s s e e eeseassessasbbebaeeesasssessssbabeneaeassss 9
L2320 1 = 11 9
REBOL BASICS... ittt ettt e ettt e et et e s s e e e s e s b e e e s sasbaee e s sabeees s e sbaeeseaabeesssasbesesssbbesesasaeesssnrnnans 11
R =S 11
D2 (=11, 0 << TP P PR PSPPSR 11

RTAT 0] 5 TSN 12
B/ 1= 0 AT 0] o 12

L0 LTS = 111 = TRV o PSS 14
o1 ox g To = TR0 o S 15
BLOCK S ..ttt ittt et e e et e e et s e e e e e e e et e e b b a——reeteeeee e aababreettaeeteaaahhaLreeeeeaeeeaaaahbabrraeeaeeeeaaaararrrrraeeeeeaanans 15
(000N (@ I =T) R 16
CONTROL STRUCTURESottt ettt et e sttt e e s e st e e e s s e e e e s s s b be e s s e sbeessssaseasssbesessasseesesansens 17
VA N ST 1 2 L0 SN 18

S Y I Y7 R 19
MAENEMBLICAl WWOTASeeiiiieeeeie ettt ettt e e s e e s e et b e e e s e e e e s s aba e e s esabeeessessseeessabbseasassbaeessasssnessssbenassans 19
COMPAISON FUNCLIONSeciiciicieesee sttt st e e te e e st e e seebe e be e teesseesseesseesseensaesseesneesnsenneeeneenn 20

L IR LT 20
S o) I O 7 27X o = = 1S T 20
EXERCISE PROGRAMSI ..ottt ettt e e ettt e e e et e e s e e e e s e st ee e s e sbaesesessreessaseeeesassensesnsnenens 21
L0 I N i 13 21
WORKING WITH REBOL .ottt ettt e et e s e ettt s s s bt e e s s e satesesesaaseessasaeeessabeeessasaeesssarenessans 22
INTERPRETER STARTUP. ...uttttiiiieiiiiisittestteeseessessissbassseesesssssssssbasseestesssessassbsssssesesssesssssassssssesssessssssssssesesssessnnns 22
INFORMATION PASSED TO SCRIPT ...uuutttttiieieeeiiesiittetereetessssssssssesesessesssesssssssssssssesssessssssssssssesssesssssssssssssessssssssns 23
S S SRR 23
CREATING SERIES ... uuttitiiiiiiiiiiiittttetiesesesiesissassseessssssasisbsssesesasssssssasbassesetasssessassssssssssessssssssssssssssessssssessssrsnsnns 24
RETRIEVING ELEMENTS .t tttttiiiiiiiiiiiiittttiies e e et essitbaaseeeseessessaabasseeseesssesssbba b s e eesaassessasbbabbeeesesssesssnsbabaseeeasssesansns 24
IMIODIFY ING ELEMENTS. . ttttttiiiieiiiiiitterteeee e e e s e esisbaaeeeesesssessabbas e e e eseseses s s s ba s s e e e saassesssbbabbeeesasssessnsbabaneseesssesansns 25
TRAVERSING SERIES ... uuuttttiiiiitiiiiiitteteeesieseieiiiissssssetsessssiaaassssssssesssssamisstssseessssssemissstssssestesssemmmmssssseseesseennnnnns 26
OTHER SERIES! FUNCTIONS uuttiiiiiiiii e ceiiiieri e s e e s s eesiibbase e st e s s s eesabasbesesessseesasbssbeseaeassessassbsbbsassessssssansssrrnnnns 27
(L1 (O 11]\ TR 28
INTERFACE SPECIFICATION BLOGCKuvviiiiietiie i cieiee ettt e s estee s s s eate e s e s bae s s sesseeeessbaeessesbenessessenessssbenessanstesssansnns 28
e (o i o T Y] 1TSSV U SRS 29
AJAiNG DOCUMENEALION........ccvirtirtieeiietisiirte ettt sttt bbbt s b b et et sesbe st e e et s bt sb et e e enenbe e 29

R T 007= 01T 30
INTERACTION WITH THE OUTSIDE .. .uuututtiiiieeiiiisitteteiietessssssssssssssessesssssssssssssssssesssssssssssssssssesssssssssssssssesessssssssns 31
LIEral AFQUIMENLES.......eiitiiieieite ettt sttt sttt sbe bt e e e eesb e saeeaeeseeeb e e e anbesaeebe e s e besbeeaeanteseeebesneanteseesneans 31

(€T B o [U]0.0'< oSO U SRR UUR TR 31

RS oo oL TSP U PR UR PP OTROTRP 32
RELUMNING VAIUES ...ttt ettt b et et b et e e et eh e e e e besb e s ae e tesbesbeeaeenbesaesneans 32

[g te (o I L o101 = 33
ERRORS ... itttieiiiet e e et ettt e e e e e e s et e b e et eeeeeeseas bt aa e e eeseaeeeasasb e s e e e eeeaeees s s s b e b e e e eeeaeeeeaa b babbeeeeaeeeeeaaababrrreeeeeeeaaaans 33
o @] = o S 33

LTS 0= i aTo = 0] =S 33

EXERCISE PROGRAMS ...ttt sttt s et e s tae e s s s e e e s s bt e e e s sabae s s ssbbaeesssabbeeesensseesssnannens 34
LI A = = = 1 O 35
(00010150 1SN 1@ R 35

R T ES SR/ B = (o - 35

L= TR 1= o o S 35
V7= 0= 11 o o 35
00 0 35
SOPPING EVAIUBLTION ...ttt sttt ettt e et b b e et b e bt e e s e sb e se e b e st e bt sb e s e neebesbe s b e s enenaennan 35

S S =TSRRI 35

S L1010 ST PSPPSR 36

TS o3RO 36
I1.SELECTED REBOL CHAPTERS ..ottt ettt s vt s e e e e s sbte e e s e sab e e s s snaae e s s sabaeeeeans 37
Lo S 1T 37
L@ TS L O 1 T 37
CGl & RBOVS EMBEDDED REBOLvveiiiiitiie ettt ettt s e st s sttt e s s s bae e e s essbe s s s sssaeasssnbeeessesbesessnnnns 37
NETWORK PROGRAMMINGottt ettt eeeate s setaeees s s ettt e s sassaesessasssesssasbaeessasseesessssssesssasesesassssesssasseeens 37
RTATA =21 = AV = 37
INSTANT IMESSENGERevvvuturussesssssssssssssesesesesassssssssssteterereeeesesssssssssssssssssssssssssssssssssesesesessssessssesererereeeressssssrere 37
REBOL IDIOMS ...ttt ettt e ettt e s st e e e s e s b e e e s sasbaae e s sabbseesssbaeassnbeesssesbesesssbbeessasseesssnrnnans 37
GETTING DEFAULT VALUES. ... ttttttiiee e e e e eeeateseie et e s et sesabassseesessseesssbasseeeseassessasbasaesssesssessassssbaseesesssessassssrennnns 37
REDUCING COMMON SUB-EXPRESSIONS........ciiiiiitttttiieieseieisiibssseetiesssessisssssssssssssesissssssssssesssssssssssssssssesssessnsns 37

[T REBOL/IVIEW .ottt h e bbb et b e et b et r e 38

|. REBOL language tutorial

What is REBOL?

REBOL isafree, cross platform, highly reflective, flexible, compact, interpreted language
that optimally fits the needs of daily programming tasks — especially network/Internet related
tasks. REBOL was designed by Carl Sassenrath, the software architect responsable for the
Amiga OS. Thefirst REBOL release was in 1997 and since it has experienced many
improvements. Thisyear REBOL is even listed as nominee for the Webby avards for
technical achievement, neverthelessit's still rarely known.

REBOL stands for "Relative Expression Based Object Language”. Let'slook at thetermsin
this paragraph in more detail:

free
REBOL isnot freein terms of "Free Software" (www.fsf.org), but it'sfreein
that you don't have to pay for the interpreter aslong as you don't want to sell
your programs.

crossplatform
Currently interpreters for 42 platforms exist. Scripts designed for Win32 can
also berun on aUNIX platform (or on the other platforms for which an
interpreter exists) without modification.

highly reflective
the specification of al functions (and other words) can be obtained and
manipulated during run-time.

flexible
Everything in REBOL isa"word". There are no differences between control
structures, functions, variables and so on like there are in most other languages.
For example you could redefine the word IF that it no longer acts as the
conditional expression we are used to.

compact
The interpreter for the /Core language weighs in at 250K B, the graphical
interpreter /View is about 500K B in size and even more compact versions
exist.

inter preted
REBOL programs are not compiled to binary instruction codes but rather
remain in their source form. The interpreter takes this source code and executes
it.
In recent times REBOL technologies (the company behind REBOL) developed
aREBOL compiler. Thisisnot areal compiler per definition in that it takes the
source and trandates it to binary instruction codes but rather a program that
produces a standalone interpreter that includes a encapsulated version of your
source which still remains interpreted.

optimally fitsdaily I nternet programming tasks
Interacting with the Web is very easy:

page: read http://ww. htl-tex. ac. at/
send vpavl u@l ai n. at page

Thistwo line example reads a document from the WWW and sends it to the
given email address.

relative expression
Thewordsin REBOL (everything, as we already know (see flexible)) have
special meanings depending on the context in which they are. copy used with
astring, makes a copy of the string, whereas copy used with a port does not
replicate the port but retrieves it's currently available data. More on the details
of strings and ports later — just remember that there is no single defined
meaning for aword but rather a unlimited set of things aword can stand for,
depending on context.

Carl Sassenrath about REBOL

[...] REBOL isnot atraditional computer language like C, BASIC, or Java. Instead, REBOL
was designed to solve one of the fundamental problems in computing: the exchange and
interpretation of information between distributed computer systems. REBOL accomplishes
this through the concept of relative expressions (which ishow REBOL got its name as the
Relative Expression-Based Object Language). Relative expressions, also called "diaects’,
provide greater efficiency for representing code as well as data, and they are REBOL's
greatest strength. For example, REBOL can not only create a graphical user interface in one
line of code, but it can also send that line as data to be processed and displayed on

other Internet computer systems around the world.

The ultimate goal of REBOL isto provide a new architecture for how information is stored,
exchanged, and processed between all devices connected over the Internet. Unlike other
approaches that require tens of megabytes of code, layers upon layers of complexity that run
on only asingle platform, and specialized programming tools, REBOL is small, portable, and

easy to manage.[...]
-- Carl Sassenrath

Versions
Currently three versions of REBOL exist:

 /[Core The core language. Console version, free
* View Extends /Core with GUI ahilities, free
* /Command "Server" edition. Provides access to the underlying System,

offers database connectivity, FastCGI support and RSA
encryption among other features.
View/Pro Adds sound to /View

In recent times there were so called REBOL kernels developed. That is smaller versions of
the interpreter which only implement the most critical functions of the language. This results
in reduced overhead and much faster startup times as you only include the words you know
you are going to use.

* /Base Kernel that implements/Cor e functionality
« /Pro Adds command features to /Base
* [Face Adds graphics and sound to /Pro

Furthermore there isthe REBOL /SDK to be rel eased this week (12-Dec-2002). Not areal
REBOL version, rather akit of development tools comprising the kernels, the "compiler”
(which iscalled /Encap) and PREBOL, REBOLS preprocessor.

REBOL/IOS is not part of the language tools but an application based on REBOL offered by
REBOL technologies that enables its users to exchange data, co-work on projects and
simultaneously use REBOL programs.

Read more about the REBOL language in general at
http://www.rebol.com/index-lang.html
http://www.rebolforces.com/
http://www.codeconscious.com/rebol/

Running your first program

Setup

In thefirst part of this text we only look at the core functionality until we get a reasonable
grasp of REBOL. So the free /Core interpreter will suite perfectly for our needs. If you want
to download /View instead of /Core, that's ok but you won't experience any advantages over
/Core users.

Get acopy of the interpreter for you platform from www.rebol.com and start it. Answer the
questions and we are done with setting up.

If you are experiencing problems with the /View setup because of limited access, close the
application window with the button in the upper right corner — the installation will quit but
leave you a REBOL console capable of /View commands.

Get the User Guide

Download the REBOL/Core User Guide (http://www.rebol.com/docs/core23/rebol core.html).
A great resource if you have to look something up. Reading the whole book takes awhile — |
know, i did. But to start working with REBOL you don't have to do it — this brief tutorial
should suffice.

Try this...

Open the interpreter and try some REBOL snippets. >> is the console prompt and mustn't be
entered.

>> print "Hello, world"

>> strl: "Hello,"
>> str2: "world"
>> print [strl str2]

>> | oop 10 [prin "*"]
>> | oop 10 [print "no tv and no beer make honmer go crazy"]

pri nisnot atypo. It doesexactly what pri nt does: printing atext to the console. But
pr i n does not automatically append aline break.

>> help prin
>> help print

>> j: 20
>> proc: print ["i =" i]

Here we have seen that aword followed by acolon aspr oc: assigns the word the following
value. But when wetriedto assign pri nt toproc itfailed astheinterpreter immediately
executed pri nt andasprint doesnotreturnavaue, thereisnothing for pr oc to be set
to.

10

Togivepr oc the meaning we want it to have — being a procedure that prints the value of i —
we have to prevent the interpreter from immediately executing the word pri nt and rather
return thevaluepri nt to pr oc. Thisisdone by enclosing the words with square brackets.

>> proc: [print ["i =" i]]
>> source proc
>> repeat 1 10 proc

SOURCE show the code that created pr oc, so now we know that pr oc hold the right value.
When we put pr oc in aloop that continuously incremets |, we get the result we've asked for.
Putting REBOL code in brackets prevents the interpreter from immediately executing it.

11

REBOL Basics

Values

The REBOL language is built from three things: values, words and blocks. In this chapter we
have a close look at the values.

A value is something that stands literally there. 42 for example. A number that has the value
42. Another examplewouldbe"that's ok, ny will is gone".Thistimeitwasa
string. One last example: $0. 79. Money as we would guess (and we are right).

>> type? $0.79
== noney!

We have seen that there are many different types of entering values literally depending on the
type of data. 42 isanumber whereas" 42" would be a string. So values have different types
of data or datatypes. Similiar to other languages where you have datatypes like char, int, and
float. In REBOL however not the variables have the datatypes but the values themselves. This
IS very important.

Datatypes
Datatype Example
integer 1234
decimal 12. 34
string "REBCL worl d!"
time 15:47: 02
date 12- Decenber - 2002
tuple 192. 168. 0. 16
money EUR$0. 79
pair 640x480
char #' R
binary #{ ab82408b}
email vpavl u@l ai n. at
issue #1 SBN- 020- 1485-41-9
tag <ing src="cover.png">
file % c/ rebol / rebol . exe
url http://ww. pl ai n. at/vpavl u/
block [good bad ugly]

To convert between datatypes, use one of the existing t o- type! functions. Type
>> help to-
in the console to get an overview of conversion functions.

For amore thorough examination of different datatypes and what you can do with them skim
through the chapter Valuesin the Appendix A of REBOL/Core User Guide.

12

Words

The second important thing in REBOL are words. Words are like variables but they go a bit
further. A variable can hold a value —words can, too. In C for example, if, for and printf() are
not a variables; you can't change the "value" of anif in C. In REBOL everything not being a
block or avalue (which stand literally there) is aword and thus can be assigned a value.

>> num 12

== 12

>> if: "some string"
== "sonme string"

Y ou have just redefined the word | F. Thisis not agood idea unless you know exactly what
you are doing because from now on, at every place wherethereisan | F it no longer checks
the word immediately after it for being true and if so, executing the following block (that's
what if usually does: conditional evaluation) but evaluates to "some string” which will change
the behaviour of programs drastically.

Words do not have datatypes. Any word can hold any value and no declaration is required.
Just assign aword avalue. If you try to evaluate aword that has no value assigned (that has
no meaning to REBOL), the interpreter will report an error.

>> print foobar
** Script Error: foobar has no val ue
** Near: print foobar

Though there a no datatypes for words, there do exist different types of words. (Don't get
confused with that — it's easy)

Types of Words

Type Example Purpose

word var evaluate to it's value (interpret the word)
get-word svar get the value behind var

set-word var: set var to anew value

lit-word "var the word literally

Words return the interpreted value behind the word. If the value is a number, thisyields the
number. If the valueis astring, thisyields the string. If the value is afunction, this yields the
result of the executed funtion.

13

Get-words return the value behind the word. Thisis similiar to the previous paragraph in
many cases, however with functions for example the result differs. Not the interpreted
function but the function itself is returned.

funcl: now

12- Dec- 2002/ 15: 21: 15+1: 00
func2: :now

wait 0:01 ;1 minute

funcl ;holds interpreted ' now
12- Dec- 2002/ 15: 21: 15+1: 00
func2 ; holds ' now

12- Dec- 2002/ 15: 22: 15+1: 00

First we assigned FUNC1 the value of now (NOWreturns the current date/time value),
secondly we assigned FUNC2 the value behind now (NOWitself). This can be proven by the
following lines:

>>

source funcl

funcl: 12-Dec-2002/15:21:15+1: 00

>>

source func?2

func2: native |

]

"Returns the current |ocal date and tine."

/year "Returns the year only."

/month "Returns the nonth only."

/day "Returns the day of the nonth only."

/time "Returns the tinme only."

/zone "Returns the tine zone offset from GVl only.
/date "Returns date only."

/ weekday {Returns day of the week as integer}

/ preci se "Use nanosecond preci sion”

Set-Words don't need any further explaination. A world followed by a colon setsit to the
following value and returns this value.

>>

print a: "REBOL"

REBCL

>>

a
" REBCL"

14

Lit-Words are away to literaly specify aword. The words name itself is the value of alit-
word.

>> dunp: func [word][

ei ther value? word [
print [word "is" get word]
11

]

print [word "is undefined"]

]

>> a: 42
== 42

>> dunp 'a
ais 42

>> dunp 'b

b i s undefined
Here we passed the lit-words to a function that tests whether aword is defined (has a value).

>> set 'nane "REBOL" ;sanme as nane: " REBCL"
>> get 'nanme :sane as : nane

Unsetting a Word

By unsetting aword you take the previously assigned value from it. The value of theword is
from then on undefined. Evaluating unset words yields an error.

>> word: $100

== $100. 00

>> print word
$100. 00

>> val ue? 'word

== true

>> unset 'word

>> val ue? 'word

== fal se

>> print word

** Script Error: word has no val ue
** Near: print word

15

Protecting a Word

If aword is protected, trying to assign it a new value produces an error. This can be used to
prevent some words from being mistakenly redefined. It is, however, no guarantee that none
of your functions can change it's value because a call to UNPROTECT makes the word accept
values again.

>> chr: #'R

== #"R'

>> protect 'chr

>> chr: #"A"

** Script Error: Word chr is protected, cannot nodify
** Near: chr: #"A"

>> unprotect 'chr

>> chr: #"A"

== #"A"

Blocks

The third thing used in REBOL among values and words are blocks. This chapter introduces
Blocks in a short manner — more detail follows in the chapter Series!.

Aswe aready saw in the introductory example, blocks are made of square brackets with zero
or more elementsinside and the elements inside the block are prevented from eval uation.
Blocks can be of any size and depth and their elements of any type.

>> colors: [red green bl ue]

== [red green bl ue]

>> data: [now date colors [colors $12] 4]
== [now/ date colors [colors $12.00] 4]

All of them are valid blocks. The first one consists of three (maybe undefined) words. That
the words might be undefined is not a problem because the interpreter does not look inside the
block until you tell to. Thisis sometimes required — asin the fourth line where we want to
have the previously defined blocks as elements of this block, rather than the words.

>> do [now/ date colors [colors $12] 4]

== 4

>> data: reduce [now date colors [colors $12] 4]
== [12-Dec-2002 [red green blue] [colors $12.00] 4]

DO evaluates the block and returns the last resulting value. REDUCE also interprets the block
but returns all results in anew block. Thisis often needed to pass complex argumentsto
functions.

Both words tell the interpreter to do evaluation inside the given block. If this block contains
further blocks however, they are not evaluated. That's why the colorsinside the inner block
are still unevaluated.

16

>> conpose [now date (now date)]
== [now date 12-Dec-2002]

conpose isareduce limited to values inside parentheses which is sometimes useful to create
blocks that contain code and data.

Word Example Result

reduce [1 2] evaluates block, returns block of results

renold "[1 2]" returnsastring that looks the same as the result from reduce

reform "1 2" reduced block converted to astring

rejoin "12" astring containing all results joined together

conpose [1 2] evaluates only words in parens inside a block
Conclusion

Asthere are only three types of information in REBOL (values, words and blocks) used for
everything from variables, control structures, functions and data — there is no real difference
between code and datafor REBOL. All there is are words with a predefined meaning (value)
that describe the language.

And this language is subject to rest of the first part.

17

Control Structures

Asin (almost) every other programming language there are control structuresin REBOL as
well. Control structures are program statements that control the flow of the program.

The following lines compare REBOL s control statemenst with those known from C++ (or
related languages)

do [...] {...}
DO evaluates the block. Or a string, or afile, ...

I f expr [...] if(expr) {...}
The block isonly executed if the expression evaluates to something true.

either expr [...]][...] if(expr) {...} else {...}
If the expression evaluates to true, the first block is executed, the second block otherwise.
Note that thereisno elsein REBOL.

while [expr]] whi | e(expr){

] }

Whileisthe only control statement that has its condition inside a block. If more than one
condition is found inside the condition block, al conditions must be met in order to have the
loop executed.

for i 110 2 [for(i=1;i<=10;1+=2){

] }

For setsthe given variable to the initial value (1 here) and executes the block. Then the
increment (2 here) is repeatedly added to the variable and the block executed as long as the
variables value is not greater than the limit (10 here). Note that i has no value after the
execution of the loop.

until [do {
expr
] } while(expr);

Until takes the following block and keeps evaluating it as long as the last word evaluates to
true.

loop 10 [...] Il NAin C++
Repeats the passed block 10 times.
repeat i 10 [...] for(i=1;i<=10;i++) {...}

Incrementsi from 1 to 10 and evaluates the block for every i.

forever [...] while(1l){...}
A loop that never ends. Most times a BREAK isfound inside thisloop so that it is|eft again.
BREAK can be used to exit all kinds of loops.

18

switch/default var | switch(var){
101...] case 1: ... break;
2 [...] case 2. ... break;
101 defaul t:
}

Switch compares the observed value var with al itslabels and if one matches, the code
following the label is executed. If none matches and there is a default block, that block is
executed. The/ def aul t refinement tells the interpreter that there will be a default block.
In REBOL we would express this behaviour with some code similar to this:

switch: func [var cases /default case][

ei ther value: select cases var [do value]]|
either default [do case][none]
]

]

By entering sour ce sw t ch we can verify this assumption. The process of creating own
functionsis explained in the chapter function! later in this text.

What is true?
Every word that evaluates to something different from false or none is considered true.

>> jf O[print "this is inmportant!"]
this is inmportant!

Logical functions to make more complex conditions are

NOT a invertsthe result of a
a AND b logic: trueif both are true, false otherwise
aORb logic: falseif both are false, true otherwise

a XOR b logic: true if exact oneistrue, false otherwise

What AND, OR and XOR return their two values joined using the operator (bitwise). Shortcut
functions for ORing or ANDing alist of words are as follows:

all [] none on the first word that evaluates to false, last value otherwise
any [] returns the first value that evaluates to true, none otherwise

Simple Math

Mathematic expressions are strictly evaluated from left to right. No operator priority is

known, so you have to enclose the things you want to compute first in parentheses.

>> print 5 +5* 4
40
>> print 5 + (5 * 4)
25

Note that while there is no priority among the operators, operators take precedence over
functions. That isthe reason why pri nt 5 was not the first thing to be evaluated and the

maths performed on the result (which would be kind of awkward)

Mathematical functionsin REBOL can be applied to a wide range of numerical datatypes
which consist of Integer! (32b numbers without decimal point), Decimal! and Money! (64b

floating points), Time!, Date!, Pair! and Tuple!.

Mathematical Words
Operator Word

+ add

- subtract

* mul tiply

/ di vi de

** power

/1 remai nder
exp value
| og- 10 value
| og-2 value
| og- e value

squar e-r oot value

absol ute
negat e

mnapb
max a b

si ne

cosi ne

t angent

ar csi ne

ar ccosi ne
ar ct angent

Purpose

two words added

second subtracted from first

two words multiplied

first divided by second

first raised to the power of second
remainder of first divided by second

evaI ue

logio value

log, value

loge value, In value
vvalue

returns absolute value
changes sign of value

returns lesser of two vaues
returns bigger of two values

trigonometric sine in degrees
trigonometric cosine in degrees
trigonometric tangent in degrees
trigonometric arcsine in degrees
trigonometric arccosine in degrees
trigonometric arctangent in degrees

Comparison Functions

Operator

Strings

Word

equal
strict-equal
strict-not-equal

sane?

greater
| esser
greater-or-equa
| esser-or-equal

20

Purpose

trueif values are equa
trueif equal (case-sensitive) and of sametype
trueif not equal (case-sensitive) or different

trueif referencing the same value
trueif values are different

trueif left is greater

trueif left islesser

trueif left is greater or equal
trueif left islesser or equal

Stringsin REBOL are aone of the series! datatypes which is covered later in more detail. To
get a better grasp of what strings are about wait for the series! chapter. For now it's sufficient
to know that strings are written enclosed in "double quotes’ or { curly braces} and to have a

look at these functions

trimstr
upper case sir

remove surrounding whitespace
convert to UPPERCASE

| ower case str

conpr ess source
deconpress source

append str value
| engt h? str

Special Characters

AN

convert to lowercase

compresses a string
decompresses a compressed string

append to astring
returns lenght of string

"} }

NN N

"M carriage return

A(line), 7~ linefeed (=newline)

A(tab), ~- tab

"(page) new page

N (back) backspace

A(del) delete

Anull), "@ \O, ASCII NULL character
N(escape), "(esc) escape character

A (letter) control characters (#" A" to #""Z")
A (XX) ASCII char by hexadecimal number

Note also the predefined words escape,

new i ne, tab,

crlf and cr.

21

Exercise Programs |

This chapter offers you some easy problems you can solve with the REBOL knowledge you
have acquired by now. Try to sovle some of the example problems. Source code of sample
solutions for al programs can be found in the appendix or online at
www.plain.at/vpaviW/REBOL /examples.

Useful Functions

r ead source returns the string read from source (file, url, ...)
wri t e dest data writes data to destination (file, url, ...)

ask question prompts the user the question, returns entered string
I nput read a line from the console

to-integer value convertsvalueto aninteger

t o- dat e value converts value to adate
to-fil evaue converts value to afilename
prin data prints data without line break
print data prints data, appends line break

foreach act list [...]
executes the block for every element in list. act is set to the current
element each time

now returns current date/time

Save the source of http://www.rebol.com to afile named %rebol.html (%ohttp-save.r)
Print the greatest of three numbers stored in a, b and c. (%abc-max.r)

Write a program that repeatedly asks the user for numbers and responds with the
newly computed average value. (%avg-dig.r)

4. Write aprogram that computes the average of ablock of numbers. (Yoavg-blk.r)

5. Writea substring function that accepts a string and one paramater, the start offset
inside the string. Provide an additional refinement called len to limit the length of the
extracted substring. (%substr.r)

Compute the number of days since your birthday. (Y0age-days.r)

Scramble a string using ROT-13. Read the string from a textfile and print the
scrambled result to the screen. Used in Newsgroups to prevent accidental reading of
content. With ROT-13 characters from A to Z have numbers 1 to 26. When encrypting
data, every character is replaced by the character that hasits value plus 13 added. So A
becomes N. If avalueisbeyond 26, start again at A. So N (14) plus 13 (27) would be
A again. Aswe see, encryption and decryption isthe same in ROT-13. (%rot13.r)

wnh e

No

22

Working with REBOL

AsREBOL isaninterpreted language, programming with REBOL is somewhat different to
programming in C++ or Java. It is more like adiaog with the console than constructing code
which isthen compiled. If you don't know how something worked, type a small example into
the console to remind you or ask REBOL for help by typing hel p word.

Two methods of executing REBOL code exist

1. typing directly in the console — easy and best suited for one-liners
2. creating and executing scripts — use an editor to write a script and execute it from the
interpreter

For the latter method you need to create avalid REBOL skript which consists of a REBOL
header and some code.

REBOL []
:add code here

Thisisaminimalistic version of a REBOL script file with an empty header and no code.
Open anew file, add the following lines and save as hello.r.

REBOL [
title: "script exanple”
aut hor: "vpavl u"
date: 12-Dec-2002
version: 1.0.0

]

print "hello world"

Then, in the consol e enter

>> do %hello.r
Script: "script exanple" (12-Dec-2002)
hello world

and the script file is evaluated, assuming the interpreter runs in the same directory as the file
was created, so it canread %hel | 0. r.

Interpreter Startup

When the interpreter has finished startup, it tries to evaluate the files rebol.r and after that
user.r. rebol.r is overwritten with every new release of REBOL so you shouldn't useit for
your settings as they might get lost. User-defined settings can be stored in the user.r file. Y our
email settings for example.

>> set-net [vpavlu@lain.at nail.plain. at]

23

Information passed to Script

Y ou can add information about a script to the header. View pr obe

syst eni st andar d/ scri pt toseeadl valid fieldsfor a header. If the script isrun, the
information from the header in the file can be accessed through

systeni scri pt/ header.

systeni script/args arguments passed to a script via the commandline (or via
drag'n drop, if afile gets dropped over your script) can be
accessed through this string

systeni scri pt/ parent holdsthesyst ent scri pt object of the parent script (a
script that called this one), if any

systeni script/path the path the script is evaluated in

systeni opti ons/ hone home directory, the path where to find rebol.r and user.r

syst enf opti ons/ scri pt the filename of initial script provided to interpreter when
it was started

systeni options/ path current directory

syst eni opti ons/ args arguments passed initially to the interpreter via
commandline

systeni options/do-arg string provided by - - do option on command line

Series!

A seriesisaset of values organized in a specific order. There are many series datatypesin
REBOL which can all be processed with the same small set of functions. The simplest type of
seriesisablock which we already used.

Every seriesin REBOL has an internal index pointing to the start of the series. When working
with series thisindex is often changed. f i nd for example searches for a given pattern and
sets the index to point to the first element in the series that matches the pattern. Note that
although the resulting series looks to be a completely new list as all elements before the
internal index seem to be removed, it is still exactly the same series — only the actual start of
the seriesis not longer at its head.

>> nuns: copy [1 2 34 5]
==[12 3 4 5]

>> print nums

12345

>> | engt h? numns

== 5

>> nuns: find nuns 3
== [3 4 5]

>> print nums

345

>> | engt h? nuns

== 3

>> nuns: head nuns
==[1 2 3 4 5]

>> print nuns
12345

24

When saying the first value of the series you always talk of the value at the current index and

not the one at the very head

Creating Series

of the series.

>> a: "original"

>> b a
>> append b
>> print a

string"

original string

Assigning seriesto aword is always done by reference. So the word b isin fact a new word
pointing to the same data as a. If you want them to use different stringsuse B: copy a.
Note that this applies to values, too. It the previous example the value "original” (in the first

line) is changed to "original
copy.

>> f: func [s]
str: ""

print append str join s ",

]

>> |oop 3 [f
A,

A A

A A A

>> f: func [s]
str: copy ""

print append str join s ",

]
>> |loop 3 [f

copy series
array size
make bl ock! Ien

Retrieving Elements
pi ck seriesindex
series/1

first series

| ast series

copy/ part seriesnElem

string" aswell. To avoid unexpected behaviour, remember to use

[

A

[

A

copies a series. don't forget to copy!
creates aseries with given size
creates a block! with given size

gets element at given index

gets element at given index

getsfirst element (second, third, fourth, fifth aswell)
gets last element

returns copy of first nElem elements

25

Modifying Elements

Be careful with modifying elementsin alist that is referenced by more than one word as both
words are pointing to the same data.

>> str: "this is a long string”
== "this is a long string"

>> pos: find str "long"

== "long string"

>> renove/ part str 5

== "is a long string"

>> pos

== "string"

With change you can overwrite the element at the current index with anew value. If the
new valueisitself a series, all the elements are used to overwrite valuesin the list, starting at
the current index.

>> nuns: [1 2 3]

== [1 2 3]

>> print nuns
123

>> change nuns 3
== [2 3]

>> print nums
323

>> change nuns [5 4]
== [3]
>> print nums

543
I nsert seriesvalue inserts at current position
append seriesvalue inserts at end
change seriesvalue changes first value in series to given value
poke seriesindex value changes the element at (current index + index) to value
r epl ace series search replace searches for avalue and replacesiit
r enove series removes at current index

cl ear series removes all elements

26

Traversing Series
Modify the internal index to traverse over a series. Thisis done with the following functions.

next series returns series at next element
back series returns series at previous element
at seriesoffset returns series at given offset (+/-) relative to index
ski p series offset returns series after given offset (+/-) relative to index
head series returns series at very beginning
tail series returns series at end (after last element)

>> nunms: [1 2 3]

==[1 2 3]

>> while [not tail? nuns]]|
print nuns/1
nums: next nuns

== []

>> enpty? nuns
== true

>> print nums

>> nuns: head nuns
= [1 2 3]

>> enpty? nuns

== fal se

>> print nums
123

Keep two things in mind when iterating over series. First, the functions listed above do not
modify the internal index, they just return the series with modified index, so storing the result
Isrequired (see bold line). And second, after iterating over a series you are at the end and the
series seems empty, so go back to the head.

There are also predefined words for this kind of loop

forall series[] does same as |oop above
forski p series nElemf[] iterates over a series, skipping nElem elements
foreach word series|] iterates over series, word holds current element

For each isdifferent to the other two functions. The current element needn't be accessed
through seri es/ 1 but is stored in word each time the block executes and the internal index
isnot at the end after running af or each loop.

Other Series! Functions

join vall va2

f or m value

nol d value

do block

reduce block

rejoin, reform renold

sort series
rever se series

find seriesvalue
sel ect series value
swi t ch series value

| engt h? series
tail?, enpty? series
I ndex? series

uni que series

i nt ersect seriesA seriesB
uni on seriesA seriesB

excl ude seriesA seriesB

di f f erence seriesA seriesB

27

returns the two values joined together

returns value converted to a string

returns a REBOL readable form of value (easy to load)
evalutates block, last value returned

evaluates block, block returned

evaluates block, join/form/mold applied to result

sorts a series
reverses order of series

returns series at position of value or none
returns the value next to the given value
does the value next to the given value

returns number of elements
return true if seriesisat isempty (= isat itstail)
returns offset inside series

duplicates removed

values that occur in both series
series joined, duplicates removed
seriesA without values in seriesB
values not in both series

28

Function!

A function is an optionally parametrized set of instructions that returns exactly one value. We
aready kept instructions in ablock for later execution. This can be said to be a simple form of
afunction with no parameters

>> j: 7

>> dunp-i: [print ["i =" i]]
>> do dunp-i

i =7

dunp-i isnotarea function, though asit still requires do to be evaluated.
>> dunp-i: does [print ["i =" i]]
>> dunp-i
i =7

>> dunp-i: func [][print ["i =" i]]
>> dunp-i
i =7

Here we have created real functions. The first one used does to produce afunction value
which isthen assigned to dunp- i , whereas the second snippet used f unc to do that. The
difference between these words is the number of arguments they require. FUNC needs two
blocks, the first to specify the arguments of the function and the second for the code. does is
ashortcut for creating parameterless functions so the first block is omitted.

A third word for function creation exists. f unct i on, which accepts three blocks. The first
for specifying arguments, the second to define local words and the third is for code.

Interface Specification Block

Thefirst block f unc expectsis called the interface specification block. A block that
describes the parameters and refinements for the function and documents the function. In the
simplest form its just a block of words representing parameters to the function.

>> dunp: func [var][print ["value =" var]]
>> dunp j

value = 7

>> dunp 42

val ue = 42

By using parameters we can apply thisfunction to all valueswe liketo, not only i asin the
previous example. We lose, however the additional information of the variables namein the
output.

>> dunp: func [nane value][print [nane "=" val ue]]
>> dunp "j " j
=7

29

Though the function is not very useful any more and is kind of redundant, it does what we
want it to.

Restricting Types

Sometimesit's required to limit the types of the arguments passed to a function. For example
you can't do anything useful if you want to compute the area of acircle and instead of an
integer reprsenting it's radius you get the current time.

Y ou can restrict the valid types of an argument by writing a block of valid types behind the
according parameter.

>> dunp: func [
name [string! word!]
val ue

11

]
>> dunp j "]
** Script Error: dunp expected nanme argunent
of type: string word
** Near: dump j "j"

print [nanme "=" val ue]

If aargument of illegal typeis passed, the interpreter will report an error.

Adding Documentation

Though it's not required for a function to perform correctly, it's good practice to document
your functions inline, so that users can get information about them when typing hel p
funcname. Thisis done by adding strings to the specification block. The first string describes
the function itself. And after every parameter (or refinement) there can be a descriptive string
aswell.

>> dunp: func [
"Prints nanme and val ue of a word"
name [string! word!] "nane of word"
val ue "val ue of the word"

11

print [name "=" val ue]

]

>> hel p dunp
USAGE:
DUVP nanme val ue

DESCRI PTI ON:
Prints nane and value of a word
DUMP is a function val ue.

ARGUMENTS:
name -- nanme of word (Type: string word)
value -- value of the word (Type: any)

30

Refinements

Refinements can be used to specify variation in the normal evaluation of afunciton aswell as
provide optiona arguments. Refinements are added to the specification block as aword
preceded by adash (/).

Within the body of the function, the refinement word is used as logic value set to true, if the
refinement was provided when the function was called.

>> dunp: func [
"Prints nane and val ue of a word"
name [string! word!] "name of word"
val ue "val ue of the word"
/[hex "print output in hex format"
11
if hex [
ei ther nunber? val ue |
val ue: to-hex val ue
11
val ue: enbase/ base form val ue 16
]
]
print [nane "=" val ue]
]
>> dunp/ hex "k" k
k = O00O0O0O0OFF
>> dunp/ hex "str" str
str = 746861742773206F6B2C206D792077696C6C20697320676F6E65

A refinement can also have arguments. Parameter names after arefinement are only passed if
the refinement was provided. Documenting strings can be provided to refinements as well as
refinement parameters the same as they are written for "normal” parameters.

The order in which the refinements are provided to the function upon executing it need not
match the order in which they were inside the specification block. The only thing you have to
be careful with isthat the order of refinement arguments matches the order of provided
refinements.

>> dunp: func [
"Prints nane and val ue of a word"
name [string! word!] "nanme of word"
val ue "val ue of the word"
/[hex "print output in hex format"
[file "wites to a file"
dest [filel] "file to wite to"
11
if hex |
ei ther nunber? val ue |
val ue: to-hex val ue
11
val ue: enbase/ base form val ue 16
]
]

31

either file |
write/ append dest rejoin [nane " =" value "7/ "]

11)

print [nane "=" val ue]

]
]
>> dunp/ hex/file "]

j %dunp. | og

Interaction with the Outside

Literal Arguments

Our dunp function still has aweakness: We have to pass the words name and its value to the
function.

When afunction is executed, all its arguments are evaluated and passed to the function. So
dunp never got j as second argument but the value behind j . And whileit'simpossible to get
the name of avariable if you only haveits value, the other way is easy.

One way would be to passj aslit-word so the evaluation of theliteral | yieldstheword j,
which is passed to the funtion. And there we could write

>> dunp: func [var][print [var "=" get var]|]
>> dunp '
j =7

to get the desired result. But then every call to dunp would require us to pass aliteral which
looks kind of strange.

Another way would be to prevent an argument from being evaluated and just passed as literal.
Thisisdone by making it aliteral parameter.

>> dunp: func ['var][print [var "=" get var]]
>> dunp j
j =7

Another benefit that comes with workig with the same word not only value is that the value
can be changed inside the function affecting the word on the outside, too.

>> zap: func ['v][set v 0]
>> zap |

>> dunp j

j =0

Get Arguments

Get arguments are in the same way related to literal arguments as get-words are to lit-words.
While the literal ones return the word without evaluating it, the gets return the value behind a
word without evaluating it. For functions this would be their code instead of their return
value.

>> print-func-spec: func [:f][print nold first :f]

32

Scope

Functions share the same scope as the environment that called them. That is, functions can
access words on the outside without having them passed to them. And sometimes a function
doesn't know what words are defined outside the function and must not be modified. The best
thing to do isto define all wordsinside afunction local to the function, unless you know that
you want to modify something on the outside.

But in REBOL the only things really local to afunction are its parameters and refinements.
Thetrick used in REBOL isto define arefinement named / | ocal and add al the words we
want to be local variables as arguments to this refinement. The special thing about this
refinement is, that it is not displayed by help.

>> f: func [a /local b][print [a "," b]]
>> f 23
23 , none

/1 ocal does not show up in the generated help, but it is still a normal refinement.

>> f/local 32 7
23 , 7

If you don't care about confusing help texts you can use other refinements as local variables as
well.

>> swap: func ["a "b /tnp][
tnp: get a
set a get b
set b tnp

]
>> set [a b][2 7]
>> swap a b
>> print [a b]
72

Returning Values

A function (as any other evaluated block) returns the last evaluated value. Some words
however terminate the execution of afunction before the end is reached

>> f0: func [][1 2 3]

>> f1: func [][1 return 2 3]
>> f2: func []J[1 exit 2 3]
>> f3: func [][1 throw 2 3]
>> f0

== 3

>> f1

== 2

>> f2

>> f3

** Throw Error: No catch for throw 2
** \Where: 3

** Near: throw 2 3

33

Function Attributes

Function attributes provide control over the error handling behaviour of functions. They are
written inside a block within the function specification body.

catch errors raised inside the functions are caught automatically and returned to the
point where the function was called. Thisis useful if you are providing a
function library and don't want the error to be displayed within your function,
but where it was called.

t hr ow causes areturn or exit that has occured within this function to be thrown up
to the previous level to return.

Errors

Whenever a certain irregular condition occurs, an error is raised. Errors are of type error!
object. If such an object is evaluated, it prints an error message and halt.

>> either error? result: try [...][
probe di sarmresult
11

]

print result

t ry evaluates ablock and returnsits last evaluated value or an object of type error!. err or ?
returns true if an error! object is encountered and di sar mprevents the object from being
evauated (which would result in an error message and a halt).

Error Object

code error code number (should not be used)

type identifies error category (synt ax, mat h, access, user,i nternal)
I d name of the error. also provides block that will be printed by interpreter
argl...3 arguments to error message

near code fragment showing where error occured

wher e field isreserved

Generating Errors

>> make error! "describe error here"
<miss>

Exercise Programs Il

At the end of thefirst part of the book you should do even more practice in REBOL to use
what you have learned. Write some example programs if you haven't yet. The more of these
problems you solve yourself, the better you will be. Source code of sample solutions for all
programs can be found in the appendix or online at www.plain.at/vpaviu/REBOL /examples.

8. Writea substring function that accepts a string and one paramater, the start offset
inside the string. Provide an additional refinement called len to limit the length of the
extracted substring. (%substr.r)

9. Code the game hangman in REBOL. (%hangman.r)

10. Make afunction that actsliker epl ace/ al | buf for al filesin agiven directory and
instead of accepting only one search/replacement pair this function should accept two
blocks with search/replacement pairs. (%oreplace-in-dir.r)

11. Complete the function so that it takes all filesin the current directory with the
specified file-type as their extension, sorts them by date and renames them to name-
prefix followed by afour digit index starting at 1. If the refinement /offset is given,
this should be the starting index. (Yoname-files.r)

nane-files: func [file-type [file! string!]
name-prefix [file! string!]
[offset i [integer!]]|

]

nane-files

.] pg" "vacation"

12. Add a/ recur si ve refinementto | i st - di r. (%list-dir.r)

13. Write a script that recursively adds all filesin a given directory to a compressed
archive. Write an extraction program for this archive that requires the user to enter a
password. Make sure the contents can not be read without the password and the
password can not be obtained from the script. (Y%omake-sfx.r)

35

Tiny Reference

This chapter concludes the first part of the book. The following chapters are self-contained
and present a different aspect of REBOL programming each. Read them in no specific order —
just start with the chapters you are interested in most.

At the end of part one we give you a short summary on most frequently used REBOL words
already covered, to be able to cope with what follows. The exact types of arguments and
refinements can be obtained from entering hel p func. It's not that important to know the
functionsin detail —this comes over time — but it's important to know what word to use what

for.

Console I/O

ask ... prompt user for input
confirm ... user confirms

input ... read line of input

prin ... print (without newline)
print ... print (trailing newline)
probe ... print molded version

Files & Directories

read ... read file,url,..

write ... writeto file,url,..

load ... load REBOL code

save ... save REBOL code
rename ... renamesfile

delete ... deletesfile

dir? ... isadirectory?

exists? ... does exists?

make-dir ... creates directory
change-dir ... changes current path
what-dir ... current path

list-dir ... prints directory contents
clean-path ... cleans ./ and ../
split-path ... returns [path target]

Help & Debug

help ... displays help
source ... displays source
trace ... toggle trace mode

Evaluation

do ... evaluates a block

try ... like do. on error, returns error!
if ... conditional evaluation

either ... if with alternative

switch ... multiple choices

Loops
while ... test-first loop

until ... test-after loop

loop ... evaluate several times

repeat ... increment a number

for ... increment a number

forever ... endlessloop

foreach ... execute for each element in
series

forall ... iterate a series

forskip ... iterate a seriesin steps

Stopping evaluation

break ... exit aloop

return ... exit afunction with value
exit ... exit afunction

halt ... stop interpreter

quit ... quit interpreter

Series

copy ... Copy aseries

array ... create serieswith initial size
reduce ... evaluate inside block
compose ... reduce valuesin () only
rgjoin ... reduce and join series
reform ... reduce and form series
remold ... reduce and mold series
pick ... get element from series
first,..., fifth ... get element

insert ... insert at current index
append ... insert at end

change ... change first element
poke ... change value at position
remove ... remove first e ement
clear ... remove all elements

next ... series at next el ement
back ... series at previous element
at ... series at given element

SKip ... series after given element
head ... very start of series

tall ... end of series

length? ... series length

empty? ... if empty

tail? ... if empty

index? ... value of current index
sort ... sort aseries

reverse ... reverse a series

find ... find an element

replace ... replace an element
select ... value after found element
unigue ... remove duplicates

intersect ... sets; A? B

union...sets A? B
exclude... sets: A -B

difference...sets: (A ? B)—(A ? B)

Strings
join ... concatenate values

form ... convert to string

mold ... make REBOL readable
rgjoin ... join elementsin block
reform, remold ... see series
lowercase ... convert to lowercase
uppercase ... convert to uppercase
enbase ... encode in given base
debase ... decode from given base
dehex ... decodes %xx url-strings
COMpress ... compresses a string
decompress ... decompresses a string

Misc
now ... current date/time

random ... random value
walit ... delays execution

36

37

ll. Selected REBOL Chapters

<miss>

Parsing

Objects

CGI & r80v5 embedded REBOL

Network Programming
Webserver

Instant Messenger

REBOL Idioms

Getting default values

>> | oad any [system options/cgi ""]
Reducing common sub-expressions

>> data: [name "viktor" email vpavlu@lain.at]
>> either (flag) [
print second find data ' name
11

]

Asweknow ei t her returnsthe last evaluated value in the block, we can take common sub-

expressions out of the block which reduces typing effort, complexity and ease of maintaining.
Searching for alabel and then reducing the value immediately afterwards should be done with
sel ect instead of second fi nd.

print second find data 'email

>> print select data either node ["nane ["email |

Thirdtheei t her expr [][] issimply api ck with alogic! asargument (which returns
thefirst block if true, the second otherwise).

>> print select data pick [nane enmail] node

Ill. REBOL/View

<miss>

38

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

