
1

Creating lightweight cross-platform Applications

Viktor Pavlu
12-Dec-2002

2

3

I. REBOL LANGUAGE TUTORIAL... 5

WHAT IS REBOL?.. 6

CARL SASSENRATH ABOUT REBOL ... 7

VERSIONS.. 8

RUNNING YOUR FIRST PROGRAM.. 9

SETUP ... 9
GET THE USER GUIDE... 9
TRY THIS... 9

REBOL BASICS... 11

VALUES .. 11
Datatypes .. 11

WORDS ... 12
Types of Words.. 12
Unsetting a Word .. 14
Protecting a Word ... 15

BLOCKS .. 15
CONCLUSION .. 16

CONTROL STRUCTURES .. 17

WHAT IS TRUE?... 18

SIMPLE MATH ... 19

Mathematical Words ... 19
Comparison Functions .. 20

STRINGS... 20

SPECIAL CHARACTERS.. 20

EXERCISE PROGRAMS I ... 21

USEFUL FUNCTIONS.. 21

WORKING WITH REBOL .. 22

INTERPRETER STARTUP... 22
INFORMATION PASSED TO SCRIPT ... 23

SERIES! .. 23

CREATING SERIES ... 24
RETRIEVING ELEMENTS .. 24
MODIFYING ELEMENTS... 25
TRAVERSING SERIES ... 26
OTHER SERIES! FUNCTIONS .. 27

FUNCTION! ... 28

INTERFACE SPECIFICATION BLOCK ... 28
Restricting Types ... 29
Adding Documentation.. 29
Refinements ... 30

INTERACTION WITH THE OUTSIDE... 31
Literal Arguments.. 31
Get Arguments... 31
Scope ... 32
Returning Values ... 32
Function Attributes.. 33

ERRORS .. 33
Error Object .. 33
Generating Errors ... 33

4

EXERCISE PROGRAMS II.. 34

TINY REFERENCE... 35

Console I/O ... 35
Files & Directories.. 35
Help & Debug ... 35
Evaluation ... 35
Loops... 35
Stopping evaluation... 35
Series... 35
Strings ... 36
Misc... 36

II. SELECTED REBOL CHAPTERS .. 37

PARSING .. 37

OBJECTS.. 37

CGI & R80V5 EMBEDDED REBOL... 37

NETWORK PROGRAMMING.. 37

WEBSERVER ... 37
INSTANT MESSENGER ... 37

REBOL IDIOMS .. 37

GETTING DEFAULT VALUES... 37
REDUCING COMMON SUB-EXPRESSIONS.. 37

III. REBOL/VIEW ... 38

5

I. REBOL language tutorial

6

What is REBOL?
REBOL is a free, cross platform, highly reflective, flexible, compact, interpreted language
that optimally fits the needs of daily programming tasks – especially network/Internet related
tasks. REBOL was designed by Carl Sassenrath, the software architect responsable for the
Amiga OS. The first REBOL release was in 1997 and since it has experienced many
improvements. This year REBOL is even listed as nominee for the Webby avards for
technical achievement, nevertheless it's still rarely known.
REBOL stands for "Relative Expression Based Object Language". Let's look at the terms in
this paragraph in more detail:

free
REBOL is not free in terms of "Free Software" (www.fsf.org), but it's free in
that you don't have to pay for the interpreter as long as you don't want to sell
your programs.

cross platform
Currently interpreters for 42 platforms exist. Scripts designed for Win32 can
also be run on a UNIX platform (or on the other platforms for which an
interpreter exists) without modification.

highly reflective
the specification of all functions (and other words) can be obtained and
manipulated during run-time.

flexible
Everything in REBOL is a "word". There are no differences between control
structures, functions, variables and so on like there are in most other languages.
For example you could redefine the word IF that it no longer acts as the
conditional expression we are used to.

compact
The interpreter for the /Core language weighs in at 250KB, the graphical
interpreter /View is about 500KB in size and even more compact versions
exist.

interpreted
REBOL programs are not compiled to binary instruction codes but rather
remain in their source form. The interpreter takes this source code and executes
it.
In recent times REBOL technologies (the company behind REBOL) developed
a REBOL compiler. This is not a real compiler per definition in that it takes the
source and translates it to binary instruction codes but rather a program that
produces a standalone interpreter that includes a encapsulated version of your
source which still remains interpreted.

7

optimally fits daily Internet programming tasks
Interacting with the Web is very easy:

page: read http://www.htl-tex.ac.at/
send vpavlu@plain.at page

This two line example reads a document from the WWW and sends it to the
given email address.

relative expression
The words in REBOL (everything, as we already know (see flexible)) have
special meanings depending on the context in which they are. copy used with
a string, makes a copy of the string, whereas copy used with a port does not
replicate the port but retrieves it's currently available data. More on the details
of strings and ports later – just remember that there is no single defined
meaning for a word but rather a unlimited set of things a word can stand for,
depending on context.

Carl Sassenrath about REBOL
[...] REBOL is not a traditional computer language like C, BASIC, or Java. Instead, REBOL
was designed to solve one of the fundamental problems in computing: the exchange and
interpretation of information between distributed computer systems. REBOL accomplishes
this through the concept of relative expressions (which is how REBOL got its name as the
Relative Expression-Based Object Language). Relative expressions, also called "dialects",
provide greater efficiency for representing code as well as data, and they are REBOL's
greatest strength. For example, REBOL can not only create a graphical user interface in one
line of code, but it can also send that line as data to be processed and displayed on
other Internet computer systems around the world.

The ultimate goal of REBOL is to provide a new architecture for how information is stored,
exchanged, and processed between all devices connected over the Internet. Unlike other
approaches that require tens of megabytes of code, layers upon layers of complexity that run
on only a single platform, and specialized programming tools, REBOL is small, portable, and
easy to manage.[...]

-- Carl Sassenrath

8

Versions
Currently three versions of REBOL exist:

• /Core The core language. Console version, free
• /View Extends /Core with GUI abilities, free
• /Command "Server" edition. Provides access to the underlying System,

offers database connectivity, FastCGI support and RSA
encryption among other features.

• /View/Pro Adds sound to /View

In recent times there were so called REBOL kernels developed. That is smaller versions of
the interpreter which only implement the most critical functions of the language. This results
in reduced overhead and much faster startup times as you only include the words you know
you are going to use.

• /Base Kernel that implements /Core functionality
• /Pro Adds command features to /Base
• /Face Adds graphics and sound to /Pro

Furthermore there is the REBOL/SDK to be released this week (12-Dec-2002). Not a real
REBOL version, rather a kit of development tools comprising the kernels, the "compiler"
(which is called /Encap) and PREBOL, REBOLs preprocessor.

REBOL/IOS is not part of the language tools but an application based on REBOL offered by
REBOL technologies that enables its users to exchange data, co-work on projects and
simultaneously use REBOL programs.

Read more about the REBOL language in general at
http://www.rebol.com/index-lang.html

http://www.rebolforces.com/

http://www.codeconscious.com/rebol/

9

Running your first program

Setup
In the first part of this text we only look at the core functionality until we get a reasonable
grasp of REBOL. So the free /Core interpreter will suite perfectly for our needs. If you want
to download /View instead of /Core, that's ok but you won't experience any advantages over
/Core users.
Get a copy of the interpreter for you platform from www.rebol.com and start it. Answer the
questions and we are done with setting up.
If you are experiencing problems with the /View setup because of limited access, close the
application window with the button in the upper right corner – the installation will quit but
leave you a REBOL console capable of /View commands.

Get the User Guide
Download the REBOL/Core User Guide (http://www.rebol.com/docs/core23/rebolcore.html).
A great resource if you have to look something up. Reading the whole book takes a while – I
know, i did. But to start working with REBOL you don't have to do it – this brief tutorial
should suffice.

Try this...
Open the interpreter and try some REBOL snippets. >> is the console prompt and mustn't be
entered.

>> print "Hello, world"

>> str1: "Hello,"
>> str2: "world"
>> print [str1 str2]

>> loop 10 [prin "*"]

>> loop 10 [print "no tv and no beer make homer go crazy"]

prin is not a typo. It does exactly what print does: printing a text to the console. But
prin does not automatically append a line break.

>> help prin
>> help print

>> i: 20
>> proc: print ["i =" i]

Here we have seen that a word followed by a colon as proc: assigns the word the following
value. But when we tried to assign print to proc it failed as the interpreter immediately
executed print and as print does not return a value, there is nothing for proc to be set
to.

10

To give proc the meaning we want it to have – being a procedure that prints the value of i –
we have to prevent the interpreter from immediately executing the word print and rather
return the value print to proc. This is done by enclosing the words with square brackets.

>> proc: [print ["i =" i]]
>> source proc
>> repeat i 10 proc

SOURCE show the code that created proc, so now we know that proc hold the right value.
When we put proc in a loop that continuously incremets I, we get the result we've asked for.
Putting REBOL code in brackets prevents the interpreter from immediately executing it.

11

REBOL Basics

Values
The REBOL language is built from three things: values, words and blocks. In this chapter we
have a close look at the values.

A value is something that stands literally there. 42 for example. A number that has the value
42. Another example would be "that's ok, my will is gone". This time it was a
string. One last example: $0.79. Money as we would guess (and we are right).

>> type? $0.79
== money!

We have seen that there are many different types of entering values literally depending on the
type of data. 42 is a number whereas "42" would be a string. So values have different types
of data or datatypes. Similiar to other languages where you have datatypes like char, int, and
float. In REBOL however not the variables have the datatypes but the values themselves. This
is very important.

Datatypes
Datatype Example

integer 1234
decimal 12.34
string "REBOL world!"
time 15:47:02
date 12-December-2002
tuple 192.168.0.16
money EUR$0.79
pair 640x480
char #"R"
binary #{ab82408b}
email vpavlu@plain.at
issue #ISBN-020-1485-41-9
tag
file %/c/rebol/rebol.exe
url http://www.plain.at/vpavlu/
block [good bad ugly]

To convert between datatypes, use one of the existing to-type! functions. Type

>> help to-

in the console to get an overview of conversion functions.
For a more thorough examination of different datatypes and what you can do with them skim
through the chapter Values in the Appendix A of REBOL/Core User Guide.

12

Words
The second important thing in REBOL are words. Words are like variables but they go a bit
further. A variable can hold a value – words can, too. In C for example, if, for and printf() are
not a variables; you can't change the "value" of an if in C. In REBOL everything not being a
block or a value (which stand literally there) is a word and thus can be assigned a value.

>> num: 12
== 12
>> if: "some string"
== "some string"

You have just redefined the word IF. This is not a good idea unless you know exactly what
you are doing because from now on, at every place where there is an IF it no longer checks
the word immediately after it for being true and if so, executing the following block (that's
what if usually does: conditional evaluation) but evaluates to "some string" which will change
the behaviour of programs drastically.

Words do not have datatypes. Any word can hold any value and no declaration is required.
Just assign a word a value. If you try to evaluate a word that has no value assigned (that has
no meaning to REBOL), the interpreter will report an error.

>> print foobar
** Script Error: foobar has no value
** Near: print foobar

Though there a no datatypes for words, there do exist different types of words. (Don't get
confused with that – it's easy)

Types of Words
Type Example Purpose

word var evaluate to it's value (interpret the word)
get-word :var get the value behind var
set-word var: set var to a new value
lit-word 'var the word literally

Words return the interpreted value behind the word. If the value is a number, this yields the
number. If the value is a string, this yields the string. If the value is a function, this yields the
result of the executed funtion.

13

Get-words return the value behind the word. This is similiar to the previous paragraph in
many cases, however with functions for example the result differs. Not the interpreted
function but the function itself is returned.

>> func1: now
== 12-Dec-2002/15:21:15+1:00
>> func2: :now
>> wait 0:01 ;1 minute
>> func1 ;holds interpreted 'now
== 12-Dec-2002/15:21:15+1:00
>> func2 ;holds 'now
== 12-Dec-2002/15:22:15+1:00

First we assigned FUNC1 the value of now (NOW returns the current date/time value),
secondly we assigned FUNC2 the value behind now (NOW itself). This can be proven by the
following lines:

>> source func1
func1: 12-Dec-2002/15:21:15+1:00
>> source func2
func2: native [
 "Returns the current local date and time."
 /year "Returns the year only."
 /month "Returns the month only."
 /day "Returns the day of the month only."
 /time "Returns the time only."
 /zone "Returns the time zone offset from GMT only."
 /date "Returns date only."
 /weekday {Returns day of the week as integer}
 /precise "Use nanosecond precision"
]

Set-Words don't need any further explaination. A world followed by a colon sets it to the
following value and returns this value.

>> print a: "REBOL"
REBOL
>> a
== "REBOL"

14

Lit-Words are a way to literally specify a word. The words name itself is the value of a lit-
word.

>> dump: func [word][
 either value? word [

 print [word "is" get word]
][
 print [word "is undefined"]
]
]

>> a: 42
== 42

>> dump 'a
a is 42
>> dump 'b
b is undefined

Here we passed the lit-words to a function that tests whether a word is defined (has a value).

>> set 'name "REBOL" ;same as name: "REBOL"
>> get 'name ;same as :name

Unsetting a Word
By unsetting a word you take the previously assigned value from it. The value of the word is
from then on undefined. Evaluating unset words yields an error.

>> word: $100
== $100.00
>> print word
$100.00
>> value? 'word
== true
>> unset 'word
>> value? 'word
== false
>> print word
** Script Error: word has no value
** Near: print word

15

Protecting a Word
If a word is protected, trying to assign it a new value produces an error. This can be used to
prevent some words from being mistakenly redefined. It is, however, no guarantee that none
of your functions can change it's value because a call to UNPROTECT makes the word accept
values again.

>> chr: #"R"
== #"R"
>> protect 'chr
>> chr: #"A"
** Script Error: Word chr is protected, cannot modify
** Near: chr: #"A"
>> unprotect 'chr
>> chr: #"A"
== #"A"

Blocks
The third thing used in REBOL among values and words are blocks. This chapter introduces
Blocks in a short manner – more detail follows in the chapter Series!.

As we already saw in the introductory example, blocks are made of square brackets with zero
or more elements inside and the elements inside the block are prevented from evaluation.
Blocks can be of any size and depth and their elements of any type.

>> colors: [red green blue]
== [red green blue]
>> data: [now/date colors [colors $12] 4]
== [now/date colors [colors $12.00] 4]

All of them are valid blocks. The first one consists of three (maybe undefined) words. That
the words might be undefined is not a problem because the interpreter does not look inside the
block until you tell to. This is sometimes required – as in the fourth line where we want to
have the previously defined blocks as elements of this block, rather than the words.

>> do [now/date colors [colors $12] 4]
== 4
>> data: reduce [now/date colors [colors $12] 4]
== [12-Dec-2002 [red green blue] [colors $12.00] 4]

DO evaluates the block and returns the last resulting value. REDUCE also interprets the block
but returns all results in a new block. This is often needed to pass complex arguments to
functions.
Both words tell the interpreter to do evaluation inside the given block. If this block contains
further blocks however, they are not evaluated. That's why the colors inside the inner block
are still unevaluated.

16

>> compose [now/date (now/date)]
== [now/date 12-Dec-2002]

compose is a reduce limited to values inside parentheses which is sometimes useful to create
blocks that contain code and data.

Word Example Result

reduce [1 2] evaluates block, returns block of results
remold "[1 2]" returns a string that looks the same as the result from reduce
reform "1 2" reduced block converted to a string
rejoin "12" a string containing all results joined together
compose [1 2] evaluates only words in parens inside a block

Conclusion
As there are only three types of information in REBOL (values, words and blocks) used for
everything from variables, control structures, functions and data – there is no real difference
between code and data for REBOL. All there is are words with a predefined meaning (value)
that describe the language.
And this language is subject to rest of the first part.

17

Control Structures
As in (almost) every other programming language there are control structures in REBOL as
well. Control structures are program statements that control the flow of the program.
The following lines compare REBOLs control statemenst with those known from C++ (or
related languages)

do [...] {...}
DO evaluates the block. Or a string, or a file, …

if expr [...] if(expr) {...}
The block is only executed if the expression evaluates to something true.

either expr [...][...] if(expr) {...} else {...}
If the expression evaluates to true, the first block is executed, the second block otherwise.
Note that there is no else in REBOL.

while [expr][while(expr){

] }
While is the only control statement that has its condition inside a block. If more than one
condition is found inside the condition block, all conditions must be met in order to have the
loop executed.

for i 1 10 2 [for(i=1;i<=10;i+=2){

] }
For sets the given variable to the initial value (1 here) and executes the block. Then the
increment (2 here) is repeatedly added to the variable and the block executed as long as the
variables value is not greater than the limit (10 here). Note that i has no value after the
execution of the loop.

until [do {

 expr ...
] } while(expr);
Until takes the following block and keeps evaluating it as long as the last word evaluates to
true.

loop 10 [...] // N/A in C++
Repeats the passed block 10 times.

repeat i 10 [...] for(i=1;i<=10;i++) {...}
Increments i from 1 to 10 and evaluates the block for every i.

forever [...] while(1){...}
A loop that never ends. Most times a BREAK is found inside this loop so that it is left again.
BREAK can be used to exit all kinds of loops.

18

switch/default var [switch(var){
 1 [...] case 1: ... break;
 2 [...] case 2: ... break;
][...] default: ...

}
Switch compares the observed value var with all its labels and if one matches, the code
following the label is executed. If none matches and there is a default block, that block is
executed. The /default refinement tells the interpreter that there will be a default block.
In REBOL we would express this behaviour with some code similar to this:

switch: func [var cases /default case][
either value: select cases var [do value][

either default [do case][none]
]

]

By entering source switch we can verify this assumption. The process of creating own
functions is explained in the chapter function! later in this text.

What is true?
Every word that evaluates to something different from false or none is considered true.

>> if 0 [print "this is important!"]
this is important!

Logical functions to make more complex conditions are
NOT a inverts the result of a
a AND b logic: true if both are true, false otherwise
a OR b logic: false if both are false, true otherwise
a XOR b logic: true if exact one is true, false otherwise

What AND, OR and XOR return their two values joined using the operator (bitwise). Shortcut
functions for ORing or ANDing a list of words are as follows:

all [] none on the first word that evaluates to false, last value otherwise
any [] returns the first value that evaluates to true, none otherwise

19

Simple Math
Mathematic expressions are strictly evaluated from left to right. No operator priority is
known, so you have to enclose the things you want to compute first in parentheses.

>> print 5 + 5 * 4
40
>> print 5 + (5 * 4)
25

Note that while there is no priority among the operators, operators take precedence over
functions. That is the reason why print 5 was not the first thing to be evaluated and the
maths performed on the result (which would be kind of awkward)

Mathematical functions in REBOL can be applied to a wide range of numerical datatypes
which consist of Integer! (32b numbers without decimal point), Decimal! and Money! (64b
floating points), Time!, Date!, Pair! and Tuple!.

Mathematical Words
Operator Word Purpose

+ add two words added
- subtract second subtracted from first
* multiply two words multiplied
/ divide first divided by second
** power first raised to the power of second
// remainder remainder of first divided by second

exp value evalue

log-10 value log10 value
log-2 value log2 value
log-e value loge value, ln value
square-root value vvalue

absolute returns absolute value
negate changes sign of value

min a b returns lesser of two values
max a b returns bigger of two values

sine trigonometric sine in degrees
cosine trigonometric cosine in degrees
tangent trigonometric tangent in degrees
arcsine trigonometric arcsine in degrees
arccosine trigonometric arccosine in degrees
arctangent trigonometric arctangent in degrees

20

Comparison Functions
Operator Word Purpose

= equal true if values are equal
== strict-equal true if equal (case-sensitive) and of same type

strict-not-equal true if not equal (case-sensitive) or different
types
=? same? true if referencing the same value
<> true if values are different
> greater true if left is greater
< lesser true if left is lesser
>= greater-or-equal true if left is greater or equal
<= lesser-or-equal true if left is lesser or equal

Strings
Strings in REBOL are a one of the series! datatypes which is covered later in more detail. To
get a better grasp of what strings are about wait for the series! chapter. For now it's sufficient
to know that strings are written enclosed in "double quotes" or {curly braces} and to have a
look at these functions

trim str remove surrounding whitespace
uppercase str convert to UPPERCASE
lowercase str convert to lowercase

compress source compresses a string
decompress source decompresses a compressed string

append str value append to a string
length? str returns lenght of string

Special Characters
^" "
^} }
^^ ^
^M carriage return
^(line), ^/ linefeed (=newline)
^(tab), ^- tab
^(page) new page
^(back) backspace
^(del) delete
^(null), ^@ \0, ASCII NULL character
^(escape), ^(esc) escape character
^(letter) control characters (#"^A" to #"^Z")
^(xx) ASCII char by hexadecimal number

Note also the predefined words escape, newline, tab, crlf and cr.

21

Exercise Programs I

This chapter offers you some easy problems you can solve with the REBOL knowledge you
have acquired by now. Try to sovle some of the example problems. Source code of sample
solutions for all programs can be found in the appendix or online at
www.plain.at/vpavlu/REBOL/examples/.

Useful Functions
read source returns the string read from source (file, url, …)
write dest data writes data to destination (file, url, …)

ask question prompts the user the question, returns entered string
input read a line from the console

to-integer value converts value to an integer
to-date value converts value to a date
to-file value converts value to a filename

prin data prints data without line break
print data prints data, appends line break

foreach act list [...]
executes the block for every element in list. act is set to the current
element each time

now returns current date/time

1. Save the source of http://www.rebol.com to a file named %rebol.html (%http-save.r)
2. Print the greatest of three numbers stored in a, b and c. (%abc-max.r)
3. Write a program that repeatedly asks the user for numbers and responds with the

newly computed average value. (%avg-dlg.r)
4. Write a program that computes the average of a block of numbers. (%avg-blk.r)
5. Write a substring function that accepts a string and one paramater, the start offset

inside the string. Provide an additional refinement called len to limit the length of the
extracted substring. (%substr.r)

6. Compute the number of days since your birthday. (%age-days.r)
7. Scramble a string using ROT-13. Read the string from a textfile and print the

scrambled result to the screen. Used in Newsgroups to prevent accidental reading of
content. With ROT-13 characters from A to Z have numbers 1 to 26. When encrypting
data, every character is replaced by the character that has its value plus 13 added. So A
becomes N. If a value is beyond 26, start again at A. So N (14) plus 13 (27) would be
A again. As we see, encryption and decryption is the same in ROT-13. (%rot13.r)

22

Working with REBOL
As REBOL is an interpreted language, programming with REBOL is somewhat different to
programming in C++ or Java. It is more like a dialog with the console than constructing code
which is then compiled. If you don't know how something worked, type a small example into
the console to remind you or ask REBOL for help by typing help word.
Two methods of executing REBOL code exist

1. typing directly in the console – easy and best suited for one-liners
2. creating and executing scripts – use an editor to write a script and execute it from the

interpreter

For the latter method you need to create a valid REBOL skript which consists of a REBOL
header and some code.

REBOL []
;add code here

This is a minimalistic version of a REBOL script file with an empty header and no code.
Open a new file, add the following lines and save as hello.r.

REBOL [
 title: "script example"

 author: "vpavlu"
 date: 12-Dec-2002
 version: 1.0.0
]
print "hello world"

Then, in the console enter

>> do %hello.r
Script: "script example" (12-Dec-2002)
hello world

and the script file is evaluated, assuming the interpreter runs in the same directory as the file
was created, so it can read %hello.r.

Interpreter Startup
When the interpreter has finished startup, it tries to evaluate the files rebol.r and after that
user.r. rebol.r is overwritten with every new release of REBOL so you shouldn't use it for
your settings as they might get lost. User-defined settings can be stored in the user.r file. Your
email settings for example.

>> set-net [vpavlu@plain.at mail.plain.at]

23

Information passed to Script
You can add information about a script to the header. View probe
system/standard/script to see all valid fields for a header. If the script is run, the
information from the header in the file can be accessed through
system/script/header.

system/script/args arguments passed to a script via the commandline (or via
drag'n drop, if a file gets dropped over your script) can be
accessed through this string

system/script/parent holds the system/script object of the parent script (a
script that called this one), if any

system/script/path the path the script is evaluated in

system/options/home home directory, the path where to find rebol.r and user.r
system/options/script the filename of initial script provided to interpreter when

it was started
system/options/path current directory
system/options/args arguments passed initially to the interpreter via

commandline
system/options/do-arg string provided by --do option on command line

Series!
A series is a set of values organized in a specific order. There are many series datatypes in
REBOL which can all be processed with the same small set of functions. The simplest type of
series is a block which we already used.
Every series in REBOL has an internal index pointing to the start of the series. When working
with series this index is often changed. find for example searches for a given pattern and
sets the index to point to the first element in the series that matches the pattern. Note that
although the resulting series looks to be a completely new list as all elements before the
internal index seem to be removed, it is still exactly the same series – only the actual start of
the series is not longer at its head.

>> nums: copy [1 2 3 4 5]
== [1 2 3 4 5]
>> print nums
1 2 3 4 5
>> length? nums
== 5

>> nums: find nums 3
== [3 4 5]
>> print nums
3 4 5
>> length? nums
== 3

>> nums: head nums
== [1 2 3 4 5]

24

>> print nums
1 2 3 4 5

When saying the first value of the series you always talk of the value at the current index and
not the one at the very head of the series.

Creating Series

>> a: "original"
>> b: a
>> append b " string"
>> print a
original string

Assigning series to a word is always done by reference. So the word b is in fact a new word
pointing to the same data as a. If you want them to use different strings use B: copy a.
Note that this applies to values, too. It the previous example the value "original" (in the first
line) is changed to "original string" as well. To avoid unexpected behaviour, remember to use
copy.

>> f: func [s][
 str: ""
 print append str join s ", "
]
>> loop 3 [f "A"]
A,
A, A,
A, A, A,

>> f: func [s][
 str: copy ""
 print append str join s ", "
]
>> loop 3 [f "A"]
A,
A,
A,

copy series copies a series. don't forget to copy!
array size creates a series with given size
make block! len creates a block! with given size

Retrieving Elements
pick series index gets element at given index
series/1 gets element at given index
first series gets first element (second, third, fourth, fifth as well)
last series gets last element
copy/part series nElem returns copy of first nElem elements

25

Modifying Elements
Be careful with modifying elements in a list that is referenced by more than one word as both
words are pointing to the same data.

>> str: "this is a long string"
== "this is a long string"
>> pos: find str "long"
== "long string"
>> remove/part str 5
== "is a long string"
>> pos
== "string"

With change you can overwrite the element at the current index with a new value. If the
new value is itself a series, all the elements are used to overwrite values in the list, starting at
the current index.

>> nums: [1 2 3]
== [1 2 3]
>> print nums
1 2 3
>> change nums 3
== [2 3]
>> print nums
3 2 3
>> change nums [5 4]
== [3]
>> print nums
5 4 3

insert series value inserts at current position
append series value inserts at end
change series value changes first value in series to given value
poke series index value changes the element at (current index + index) to value
replace series search replace searches for a value and replaces it
remove series removes at current index
clear series removes all elements

26

Traversing Series
Modify the internal index to traverse over a series. This is done with the following functions.

next series returns series at next element
back series returns series at previous element
at series offset returns series at given offset (+/-) relative to index
skip series offset returns series after given offset (+/-) relative to index

head series returns series at very beginning
tail series returns series at end (after last element)

>> nums: [1 2 3]
== [1 2 3]
>> while [not tail? nums][
 print nums/1
 nums: next nums
]
1
2
3
== []
>> empty? nums
== true
>> print nums

>> nums: head nums
== [1 2 3]
>> empty? nums
== false
>> print nums
1 2 3

Keep two things in mind when iterating over series: First, the functions listed above do not
modify the internal index, they just return the series with modified index, so storing the result
is required (see bold line). And second, after iterating over a series you are at the end and the
series seems empty, so go back to the head.

There are also predefined words for this kind of loop

forall series [] does same as loop above
forskip series nElem [] iterates over a series, skipping nElem elements
foreach word series [] iterates over series, word holds current element

Foreach is different to the other two functions. The current element needn't be accessed
through series/1 but is stored in word each time the block executes and the internal index
is not at the end after running a foreach loop.

27

Other Series! Functions
join val1 val2 returns the two values joined together
form value returns value converted to a string
mold value returns a REBOL readable form of value (easy to load)
do block evalutates block, last value returned
reduce block evaluates block, block returned
rejoin, reform, remold evaluates block, join/form/mold applied to result

sort series sorts a series
reverse series reverses order of series

find series value returns series at position of value or none
select series value returns the value next to the given value
switch series value does the value next to the given value

length? series returns number of elements
tail?, empty? series return true if series is at is empty (= is at its tail)
index? series returns offset inside series

unique series duplicates removed
intersect seriesA seriesB values that occur in both series
union seriesA seriesB series joined, duplicates removed
exclude seriesA seriesB seriesA without values in seriesB
difference seriesA seriesB values not in both series

28

Function!
A function is an optionally parametrized set of instructions that returns exactly one value. We
already kept instructions in a block for later execution. This can be said to be a simple form of
a function with no parameters

>> i: 7
>> dump-i: [print ["i =" i]]
>> do dump-i
i = 7

dump-i is not a real function, though as it still requires do to be evaluated.

>> dump-i: does [print ["i =" i]]
>> dump-i
i = 7

>> dump-i: func [][print ["i =" i]]
>> dump-i
i = 7

Here we have created real functions. The first one used does to produce a function value
which is then assigned to dump-i, whereas the second snippet used func to do that. The
difference between these words is the number of arguments they require. FUNC needs two
blocks, the first to specify the arguments of the function and the second for the code. does is
a shortcut for creating parameterless functions so the first block is omitted.
A third word for function creation exists: function, which accepts three blocks. The first
for specifying arguments, the second to define local words and the third is for code.

Interface Specification Block
The first block func expects is called the interface specification block. A block that
describes the parameters and refinements for the function and documents the function. In the
simplest form its just a block of words representing parameters to the function.

>> dump: func [var][print ["value =" var]]
>> dump j
value = 7
>> dump 42
value = 42

By using parameters we can apply this function to all values we like to, not only i as in the
previous example. We lose, however the additional information of the variables name in the
output.

>> dump: func [name value][print [name "=" value]]
>> dump "j" j
j = 7

29

Though the function is not very useful any more and is kind of redundant, it does what we
want it to.

Restricting Types
Sometimes it's required to limit the types of the arguments passed to a function. For example
you can't do anything useful if you want to compute the area of a circle and instead of an
integer reprsenting it's radius you get the current time.
You can restrict the valid types of an argument by writing a block of valid types behind the
according parameter.

>> dump: func [
 name [string! word!]
 value
][
 print [name "=" value]
]
>> dump j "j"
** Script Error: dump expected name argument
 of type: string word
** Near: dump j "j"

If a argument of illegal type is passed, the interpreter will report an error.

Adding Documentation
Though it's not required for a function to perform correctly, it's good practice to document
your functions inline, so that users can get information about them when typing help
funcname. This is done by adding strings to the specification block. The first string describes
the function itself. And after every parameter (or refinement) there can be a descriptive string
as well.

>> dump: func [
 "Prints name and value of a word"
 name [string! word!] "name of word"
 value "value of the word"

][
 print [name "=" value]
]

 >> help dump
USAGE:
 DUMP name value

DESCRIPTION:
 Prints name and value of a word
 DUMP is a function value.

ARGUMENTS:
 name -- name of word (Type: string word)
 value -- value of the word (Type: any)

30

Refinements
Refinements can be used to specify variation in the normal evaluation of a funciton as well as
provide optional arguments. Refinements are added to the specification block as a word
preceded by a slash (/).
Within the body of the function, the refinement word is used as logic value set to true, if the
refinement was provided when the function was called.

>> dump: func [
 "Prints name and value of a word"
 name [string! word!] "name of word"
 value "value of the word"
 /hex "print output in hex format"
][
 if hex [
 either number? value [
 value: to-hex value
][
 value: enbase/base form value 16
]
]
 print [name "=" value]
]
>> dump/hex "k" k
k = 000000FF
>> dump/hex "str" str
str = 746861742773206F6B2C206D792077696C6C20697320676F6E65

A refinement can also have arguments. Parameter names after a refinement are only passed if
the refinement was provided. Documenting strings can be provided to refinements as well as
refinement parameters the same as they are written for "normal" parameters.
The order in which the refinements are provided to the function upon executing it need not
match the order in which they were inside the specification block. The only thing you have to
be careful with is that the order of refinement arguments matches the order of provided
refinements.

>> dump: func [
 "Prints name and value of a word"
 name [string! word!] "name of word"
 value "value of the word"
 /hex "print output in hex format"
 /file "writes to a file"
 dest [file!] "file to write to"
][
 if hex [
 either number? value [
 value: to-hex value
][
 value: enbase/base form value 16
]
]

31

 either file [
 write/append dest rejoin [name " = " value "^/"]
][
 print [name "=" value]
]
]
>> dump/hex/file "j" j %dump.log

Interaction with the Outside

Literal Arguments
Our dump function still has a weakness: We have to pass the words name and its value to the
function.
When a function is executed, all its arguments are evaluated and passed to the function. So
dump never got j as second argument but the value behind j. And while it's impossible to get
the name of a variable if you only have its value, the other way is easy.
One way would be to pass j as lit-word so the evaluation of the literal j yields the word j,
which is passed to the funtion. And there we could write

>> dump: func [var][print [var "=" get var]]
>> dump 'j
j = 7

to get the desired result. But then every call to dump would require us to pass a literal which
looks kind of strange.
Another way would be to prevent an argument from being evaluated and just passed as literal.
This is done by making it a literal parameter.

>> dump: func ['var][print [var "=" get var]]
>> dump j
j = 7

Another benefit that comes with workig with the same word not only value is that the value
can be changed inside the function affecting the word on the outside, too.

>> zap: func ['v][set v 0]
>> zap j
>> dump j
j = 0

Get Arguments
Get arguments are in the same way related to literal arguments as get-words are to lit-words.
While the literal ones return the word without evaluating it, the gets return the value behind a
word without evaluating it. For functions this would be their code instead of their return
value.

>> print-func-spec: func [:f][print mold first :f]

32

Scope
Functions share the same scope as the environment that called them. That is, functions can
access words on the outside without having them passed to them. And sometimes a function
doesn't know what words are defined outside the function and must not be modified. The best
thing to do is to define all words inside a function local to the function, unless you know that
you want to modify something on the outside.
But in REBOL the only things really local to a function are its parameters and refinements.
The trick used in REBOL is to define a refinement named /local and add all the words we
want to be local variables as arguments to this refinement. The special thing about this
refinement is, that it is not displayed by help.

>> f: func [a /local b][print [a "," b]]
>> f 23
23 , none

/local does not show up in the generated help, but it is still a normal refinement.

>> f/local 32 7
23 , 7

If you don't care about confusing help texts you can use other refinements as local variables as
well.

>> swap: func ['a 'b /tmp][
 tmp: get a
 set a get b
 set b tmp
]
>> set [a b][2 7]
>> swap a b
>> print [a b]
7 2

Returning Values
A function (as any other evaluated block) returns the last evaluated value. Some words
however terminate the execution of a function before the end is reached

>> f0: func [][1 2 3]
>> f1: func [][1 return 2 3]
>> f2: func [][1 exit 2 3]
>> f3: func [][1 throw 2 3]
>> f0
== 3
>> f1
== 2
>> f2
>> f3
** Throw Error: No catch for throw: 2
** Where: f3
** Near: throw 2 3

33

Function Attributes
Function attributes provide control over the error handling behaviour of functions. They are
written inside a block within the function specification body.

catch errors raised inside the functions are caught automatically and returned to the
point where the function was called. This is useful if you are providing a
function library and don't want the error to be displayed within your function,
but where it was called.

throw causes a return or exit that has occured within this function to be thrown up
to the previous level to return.

Errors
Whenever a certain irregular condition occurs, an error is raised. Errors are of type error!
object. If such an object is evaluated, it prints an error message and halt.

>> either error? result: try [...][
 probe disarm result
][
 print result
]

try evaluates a block and returns its last evaluated value or an object of type error!. error?
returns true if an error! object is encountered and disarm prevents the object from being
evaluated (which would result in an error message and a halt).

Error Object
code error code number (should not be used)
type identifies error category (syntax, math, access, user, internal)
id name of the error. also provides block that will be printed by interpreter
arg1…3 arguments to error message
near code fragment showing where error occured
where field is reserved

Generating Errors
>> make error! "describe error here"
<miss>

34

Exercise Programs II
At the end of the first part of the book you should do even more practice in REBOL to use
what you have learned. Write some example programs if you haven't yet. The more of these
problems you solve yourself, the better you will be. Source code of sample solutions for all
programs can be found in the appendix or online at www.plain.at/vpavlu/REBOL/examples/.

8. Write a substring function that accepts a string and one paramater, the start offset
inside the string. Provide an additional refinement called len to limit the length of the
extracted substring. (%substr.r)

9. Code the game hangman in REBOL. (%hangman.r)
10. Make a function that acts like replace/all buf for all files in a given directory and

instead of accepting only one search/replacement pair this function should accept two
blocks with search/replacement pairs. (%replace-in-dir.r)

11. Complete the function so that it takes all files in the current directory with the
specified file-type as their extension, sorts them by date and renames them to name-
prefix followed by a four digit index starting at 1. If the refinement /offset is given,
this should be the starting index. (%name-files.r)

name-files: func [file-type [file! string!]
 name-prefix [file! string!]
 /offset i [integer!]][
 ...
]
name-files ".jpg" "vacation"

12. Add a /recursive refinement to list-dir. (%list-dir.r)
13. Write a script that recursively adds all files in a given directory to a compressed

archive. Write an extraction program for this archive that requires the user to enter a
password. Make sure the contents can not be read without the password and the
password can not be obtained from the script. (%make-sfx.r)

35

Tiny Reference
This chapter concludes the first part of the book. The following chapters are self-contained
and present a different aspect of REBOL programming each. Read them in no specific order –
just start with the chapters you are interested in most.
At the end of part one we give you a short summary on most frequently used REBOL words
already covered, to be able to cope with what follows. The exact types of arguments and
refinements can be obtained from entering help func. It's not that important to know the
functions in detail – this comes over time – but it's important to know what word to use what
for.

Console I/O
ask ... prompt user for input
confirm ... user confirms
input ... read line of input
prin ... print (without newline)
print … print (trailing newline)
probe … print molded version

Files & Directories
read … read file,url,..
write … write to file,url,..
load … load REBOL code
save … save REBOL code
rename … renames file
delete … deletes file
dir? … is a directory?
exists? … does exists?
make-dir … creates directory
change-dir … changes current path
what-dir … current path
list-dir … prints directory contents
clean-path … cleans ./ and ../
split-path … returns [path target]

Help & Debug
help … displays help
source … displays source
trace … toggle trace mode

Evaluation
do … evaluates a block
try … like do. on error, returns error!
if … conditional evaluation
either … if with alternative
switch … multiple choices

Loops
while … test-first loop

until … test-after loop
loop … evaluate several times
repeat … increment a number
for … increment a number
forever … endless loop
foreach … execute for each element in
series
forall … iterate a series
forskip … iterate a series in steps

Stopping evaluation
break … exit a loop
return … exit a function with value
exit … exit a function
halt … stop interpreter
quit … quit interpreter

Series
copy … copy a series
array … create series with initial size
reduce … evaluate inside block
compose … reduce values in () only
rejoin … reduce and join series
reform … reduce and form series
remold … reduce and mold series
pick … get element from series
first,..., fifth … get element
insert … insert at current index
append … insert at end
change … change first element
poke … change value at position
remove … remove first element
clear … remove all elements
next … series at next element
back … series at previous element
at … series at given element
skip … series after given element
head … very start of series
tail … end of series

36

length? … series' length
empty? … if empty
tail? … if empty
index? … value of current index
sort … sort a series
reverse … reverse a series
find … find an element
replace … replace an element
select … value after found element
unique … remove duplicates

intersect … sets: A ? B

union … sets: A ? B
exclude … sets: A - B

difference …sets: (A ? B) – (A ? B)

Strings
join … concatenate values

form … convert to string
mold … make REBOL readable
rejoin … join elements in block
reform, remold … see series
lowercase … convert to lowercase
uppercase … convert to uppercase
enbase … encode in given base
debase … decode from given base
dehex … decodes %xx url-strings
compress … compresses a string
decompress … decompresses a string

Misc
now … current date/time
random … random value
wait … delays execution

37

II. Selected REBOL Chapters
<miss>

Parsing

Objects

CGI & r80v5 embedded REBOL

Network Programming

Webserver

Instant Messenger

REBOL Idioms

Getting default values

>> load any [system/options/cgi ""]

Reducing common sub-expressions

>> data: [name "viktor" email vpavlu@plain.at]
>> either (flag) [

 print second find data 'name
][

 print second find data 'email
]

As we know either returns the last evaluated value in the block, we can take common sub-
expressions out of the block which reduces typing effort, complexity and ease of maintaining.
Searching for a label and then reducing the value immediately afterwards should be done with
select instead of second find.

>> print select data either mode ['name]['email]

Third the either expr [][] is simply a pick with a logic! as argument (which returns
the first block if true, the second otherwise).

>> print select data pick [name email] mode

38

III. REBOL/View
<miss>

This document was created with Win2PDF available at http://www.daneprairie.com.
The unregistered version of Win2PDF is for evaluation or non-commercial use only.

http://www.daneprairie.com

